Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.063
Filtrar
1.
Sci Data ; 11(1): 312, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531927

RESUMO

The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.


Assuntos
Besouros , Genoma de Inseto , Nematoides , Pinus , Animais , Besouros/genética , Besouros/parasitologia , Pinus/parasitologia , Madeira , Insetos Vetores/genética , Insetos Vetores/parasitologia
2.
Genes (Basel) ; 15(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540382

RESUMO

The emergence of culicoid-transmitted bluetongue and Schmallenberg viruses in several European countries demonstrated the ability of indigenous biting midge species to transmit pathogens. Entomologic research programs identified members of the Obsoletus Group (Culicoides subgenus Avaritia) as keyplayers in disease epidemiology in Europe. However, morphological identification of potential vectors is challenging due to the recent discovery of new genetic variants (haplotypes) of C. obsoletus sensu stricto (s.s.), forming distinct clades. In this study, 4422 GenBank entries of the mitochondrial cytochrome c oxidase subunit I (COI) gene of subgenus Avaritia members of the genus Culicoides were analyzed to develop a conventional multiplex PCR, capable of detecting all vector species and clades of the Western Palearctic in this subgenus. Numerous GenBank entries incorrectly assigned to a species were identified, analyzed and reassigned. The results suggest that the three C. obsoletus clades represent independent species, whereas C. montanus should rather be regarded as a genetic variant of C. obsoletus s.s. Based on these findings, specific primers were designed and validated with DNA material from field-caught biting midges which achieved very high diagnostic sensitivity (100%) when compared to an established reference PCR (82.6%).


Assuntos
Ceratopogonidae , Animais , Ceratopogonidae/genética , Reação em Cadeia da Polimerase Multiplex , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Insetos Vetores/genética
3.
Arch Insect Biochem Physiol ; 115(3): e22102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500452

RESUMO

The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.


Assuntos
Tisanópteros , Tospovirus , Animais , Insetos Vetores/genética , Insetos , Filogenia , Tisanópteros/genética , Tospovirus/genética
4.
Mem Inst Oswaldo Cruz ; 119: e230181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324880

RESUMO

BACKGROUND: In Brazil, transmission of visceral and cutaneous leishmaniasis has expanded geographically over the last decades, with both clinical forms occurring simultaneously in the same area. OBJECTIVES: This study characterised the clinical, spatial, and temporal distribution, and performed entomological surveillance and natural infection analysis of a leishmaniasis-endemic area. METHODS: In order to characterise the risk of leishmaniasis transmission in Altos, Piauí, we described the clinical and socio-demographic variables and the spatial and temporal distribution of cases of American visceral leishmaniasis (AVL) and American cutaneous leishmaniasis (ACL) cases and identified potential phlebotomine vectors. FINDINGS: The urban area concentrated almost 54% of ACL and 86.8% of AVL cases. The temporal and spatial distribution of AVL and ACL cases in Altos show a reduction in the number of risk areas, but the presence of permanent disease transmission foci is observed especially in the urban area. 3,808 phlebotomine specimens were captured, with Lutzomyia longipalpis as the most frequent species (98.45%). Of the 35 females assessed for natural infection, one specimen of Lu. longipalpis tested positive for the presence of Leishmania infantum and Leishmania braziliensis DNA. MAIN CONCLUSION: Our results indicate the presence of risk areas for ACL and AVL in the municipality of Altos and highlight the importance of entomological surveillance to further understand a possible role of Lu. longipalpis in ACL transmission.


Assuntos
Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Animais , Feminino , Brasil/epidemiologia , Insetos Vetores/genética , Leishmaniose Cutânea/epidemiologia , Leishmaniose Visceral/epidemiologia , Leishmania infantum/genética , DNA
5.
Sci Rep ; 14(1): 722, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184729

RESUMO

Morphological studies applied to the taxonomy of the Triatominae cover various structures (head, wing, thorax, genitalia, and eggs). Exochorial structures of hybrid eggs were characterized and compared with the parents, demonstrating that hybrids presented characteristics identical to the exochorial pattern observed in the females of the crosses, which resulted in the hypothesis that the pattern of triatomine eggs is possibly a characteristic inherited from females. Thus, we characterized the exochorium of the eggs of several triatomine hybrids and compared them with the parents, to assess the pattern of segregation and test the hypothesis of maternal inheritance. Hybrids were obtained in at least one direction from all crosses. The analysis of the exochorium of the eggs of the hybrids showed different patterns of segregation: "exclusively paternal", "predominantly maternal", "predominantly paternal", "mutual", and "differential". Curiously, none of the hybrids evaluated presented characteristics that segregated exclusively from the female parental species. Thus, we demonstrate that the hypothesis of maternal inheritance of the exochorium pattern of eggs is not valid and we emphasize the importance of alternative/combined tools (such as integrative taxonomy) for the correct identification of these insect vectors (mainly in view of possible natural hybridization events due to climate and environmental changes).


Assuntos
Doença de Chagas , Triatominae , Animais , Feminino , Herança Materna , Doença de Chagas/genética , Triatominae/genética , Clima , Insetos Vetores/genética
6.
Am J Trop Med Hyg ; 110(2): 311-319, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38167314

RESUMO

Since ancient times, seaports have been the hot spots for plague introduction into free countries. Infected ship rats reached new areas, and epizootics occurred prior to human infection via flea bites. Beginning in the 1920s/1930s, rodent and flea surveillance was carried out as part of plague hazard management in seaports of the world. Nowadays, such activity is not done regularly. In the southwestern Indian Ocean (SWIO) region, plague surveillance is of great importance given plague endemicity in Madagascar and thus the incurred risk for neighboring islands. This study reports animal-based surveillance aimed at identifying fleas and their small mammal hosts in SWIO seaports as well as Yersinia pestis detection. Small mammal trappings were performed in five main seaports of Madagascar (Toamasina and Mahajanga), Mauritius (Port Louis), and the Union of Comoros (Moroni and Mutsamudu). Mammals were euthanized and their fleas collected and morphologically identified before Y. pestis detection. In total, 145 mammals were trapped: the brown rat Rattus norvegicus (76.5%), the black rat Rattus rattus (8.3%), and the Asian house shrew Suncus murinus (15.2%). Fur brushing allowed collection of 1,596 fleas exclusively identified as Xenopsylla cheopis. All tested fleas were negative for Y. pestis DNA. This study shows that both well-known plague mammal hosts and flea vectors occur in SWIO seaports. It also highlights the necessity of carrying out regular animal-based surveillance for plague hazard management in this region.


Assuntos
Infestações por Pulgas , Peste , Sifonápteros , Yersinia pestis , Humanos , Ratos , Animais , Peste/epidemiologia , Peste/veterinária , Oceano Índico , Insetos Vetores/genética , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Roedores
7.
Commun Biol ; 6(1): 1244, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066195

RESUMO

Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.


Assuntos
Leishmania , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Insetos Vetores/genética , Europa (Continente)
8.
Parasit Vectors ; 16(1): 335, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749577

RESUMO

BACKGROUND: The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. METHODS: Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. RESULTS: Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. CONCLUSIONS: The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species.


Assuntos
Anopheles , Malária , Microsporídios , Humanos , Animais , Feminino , Masculino , Anopheles/genética , Mosquitos Vetores , Insetos Vetores/genética
9.
Sci Rep ; 13(1): 13120, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573416

RESUMO

The growing interest in microRNAs (miRNAs) over recent years has led to their characterization in numerous organisms. However, there is currently a lack of data available on miRNAs from triatomine bugs (Reduviidae: Triatominae), which are the vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. A comprehensive understanding of the molecular biology of vectors provides new insights into insect-host interactions and insect control approaches, which are key methods to prevent disease incidence in endemic areas. In this work, we describe the miRNome profiles from gut, hemolymph, and salivary gland tissues of the Rhodnius prolixus triatomine. Small RNA sequencing data revealed abundant expression of miRNAs, along with tRNA- and rRNA-derived fragments. Fifty-two mature miRNAs, previously reported in Ecdysozoa, were identified, including 39 ubiquitously expressed in the three tissues. Additionally, 112, 73, and 78 novel miRNAs were predicted in the gut, hemolymph, and salivary glands, respectively. In silico prediction showed that the top eight most highly expressed miRNAs from salivary glands potentially target human blood-expressed genes, suggesting that R. prolixus may modulate the host's gene expression at the bite site. This study provides the first characterization of miRNAs in a Triatominae species, shedding light on the role of these crucial regulatory molecules.


Assuntos
Doença de Chagas , MicroRNAs , Rhodnius , Triatominae , Trypanosoma cruzi , Animais , Humanos , Rhodnius/genética , Rhodnius/parasitologia , MicroRNAs/genética , Insetos Vetores/genética , Insetos Vetores/parasitologia , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética , Triatominae/parasitologia
10.
Acta Trop ; 245: 106970, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339715

RESUMO

Simulium damnosum s.l., the most important vector of onchocerciasis in Africa, is a complex of sibling species described on the basis of differences in their larval polytene chromosomes. These (cyto) species differ in their geographical distributions, ecologies and epidemiological roles. In Togo and Benin, distributional changes have been recorded as a consequence of vector control and environmental changes (e.g. creation of dams, deforestation), with potential epidemiological consequences. We review the distribution of cytospecies in Togo and Benin and report changes observed from 1975 to 2018. The elimination of the Djodji form of S. sanctipauli in south-western Togo in 1988 seems to have had no long-term effects on the distribution of the other cytospecies, despite an initial surge by S. yahense. Although we report a general tendency for long-term stability in most cytospecies' distributions, we also assess how the cytospecies' geographical distributions have fluctuated and how they vary with the seasons. In addition to seasonal expansions of geographical ranges by all species except S. yahense, there are seasonal variations in the relative abundances of cytospecies within a year. In the lower Mono river, the Beffa form of S. soubrense predominates in the dry season but is replaced as the dominant taxon in the rainy season by S. damnosum s.str. Deforestation was previously implicated in an increase of savanna cytospecies in southern Togo (1975-1997), but our data had little power to support (or refute) suggestions of a continuing increase, partly because of a lack of recent sampling. In contrast, the construction of dams and other environmental changes including climate change seem to be leading to decreases in the populations of S. damnosum s.l. in Togo and Benin. If so, combined with the disappearance of the Djodji form of S. sanctipauli, a potent vector, plus historic vector control actions and community directed treatments with ivermectin, onchocerciasis transmission in Togo and Benin is much reduced compared with the situation in 1975.


Assuntos
Oncocercose , Simuliidae , Animais , Simuliidae/genética , Estações do Ano , Togo/epidemiologia , Benin/epidemiologia , Insetos Vetores/genética
11.
Zoonoses Public Health ; 70(5): 383-392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36898974

RESUMO

In the Americas, the sandfly Lutzomyia longipalpis is the main vector of the parasitic protozoa Leishmania infantum, the etiological agent of visceral leishmaniasis (VL). The Lu. longipalpis species complex is currently discontinuously distributed across the Neotropical region, from Mexico to the north of Argentina and Uruguay. During its continental spreading, it must have adapted to several biomes and temperature amplitudes, when founder events should have contributed to the high genetic divergence and geographical structure currently observed, reinforcing the speciation process. The first report of Lu. longipalpis in Uruguay was in 2010, calling the attention of Public Health authorities. Five years later, the parasite Le. infantum was recorded and in 2015 the first case of VL in canids was reported. Hitherto seven human cases by VL have been reported in Uruguay. Here, we publish the first DNA sequences from the mitochondrial genes ND4 and CYTB of Lu. longipalpis collected in Uruguay, and we used these molecular markers to investigate their genetic variability and population structure. We described four new ND4 haplotypes in a total of 98 (4/98) and one CYTB in a total of 77 (1/77). As expected, we were able to establish that the Lu. longipalpis collected in two localities (i.e. Salto and Bella Unión) from the north of Uruguay are closely related to the populations from neighbouring countries. We also propose that the possible route for the vector arrival to the region may have been through vegetation and forest corridors of the Uruguay River system, as well as it may have benefited from landscape modifications generated by commercial forestation. The ecological-scale processes shaping Lu. longipalpis populations, the identification of genetically homogeneous groups and the gene flow among them must be carefully investigated by using highly sensible molecular markers (i.e. genome wide SNPs) since it will help to the understanding of VL transmission and contribute to the planification of public policies on its control.


Assuntos
Leishmania infantum , Leishmaniose Visceral , Psychodidae , Animais , Humanos , Brasil/epidemiologia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Leishmania infantum/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/veterinária , Psychodidae/parasitologia , Uruguai/epidemiologia
12.
Arch Insect Biochem Physiol ; 112(2): e21992, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36575628

RESUMO

The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.


Assuntos
Hemípteros , Oryza , Tenuivirus , Animais , Tenuivirus/genética , Insetos Vetores/genética , Hemípteros/genética , Insetos/genética , Perfilação da Expressão Gênica , Proteínas Virais/metabolismo
13.
J Med Entomol ; 59(6): 2170-2175, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35980597

RESUMO

Visceral leishmaniasis is not endemic in West Africa, but prevalence of canine leishmaniasis and seroprevalence of Leishmania infantum infection in humans are high in the Mont Rolland community (Thiès region, Senegal). Previous studies in this area showed that Sergentomyia schwetzi could be the potential vector of Le. infantum. To precisely describe the biology and population structure of this potential vector, we identified eight novel microsatellite loci to characterize Se. schwetzi populations. We tested these loci in Se. schwetzi populations from five locations at Mont Rolland (Thiès, Senegal). All the loci were polymorphic, with a mean of 17.25 alleles (observed heterozygosity: 0.455). We did not detect any evidence of scoring errors due to stuttering and large allele dropout. Moreover, several of these loci were also amplified in six other sand fly species (Sergentomyia magna, Sergentomyia dubia, Sergentomyia minuta, Phlebotomus duboscqi, Phlebotomus perniciosus, and Phlebotomus ariasi). These preliminary results demonstrate the utility of these microsatellite markers for Se. schwetzi (and for the other sand fly species) population genetic studies.


Assuntos
Repetições de Microssatélites , Phlebotomus , Animais , Cães , Humanos , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Leishmania infantum/genética , Leishmaniose , Phlebotomus/genética , Phlebotomus/parasitologia , Senegal/epidemiologia , Estudos Soroepidemiológicos
14.
BMC Genomics ; 23(1): 584, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962326

RESUMO

BACKGROUND: Mitochondrial genomes are the most sequenced genomes after bacterial and fungal genomic DNA. However, little information on mitogenomes is available for multiple metazoan taxa, such as Culicoides, a globally distributed, megadiverse genus containing 1,347 species. AIM:  Generating novel mitogenomic information from single Culicoides sonorensis and C. biguttatus specimens, comparing available mitogenome mapping and de novo assembly tools, and identifying the best performing strategy and tools for Culicoides species. RESULTS: We present two novel and fully annotated mitochondrial haplotypes for two Culicoides species, C. sonorensis and C. biguttatus. We also annotated or re-annotated the only available reference mitogenome for C. sonorensis and C. arakawae. All species present a high similarity in mitogenome organization. The general gene arrangement for all Culicoides species was identical to the ancestral insect mitochondrial genome. Only short spacers were found in C. sonorensis (up to 30 bp), contrary to C. biguttatus (up to 114 bp). The mitochondrial genes ATP8, NAD2, NAD6, and LSU rRNA exhibited the highest nucleotide diversity and pairwise interspecific p genetic distance, suggesting that these genes might be suitable and complementary molecular barcodes for Culicoides identification in addition to the commonly utilized COI gene. We observed performance differences between the compared mitogenome generation strategies. The mapping strategy outperformed the de novo assembly strategy, but mapping results were partially biased in the absence of species-specific reference mitogenome. Among the utilized tools, BWA performed best for C. sonorensis while SPAdes, MEGAHIT, and MitoZ were among the best for C. biguttatus. The best-performing mitogenome annotator was MITOS2. Additionally, we were able to recover exogenous mitochondrial DNA from Bos taurus (biting midges host) from a C. biguttatus blood meal sample. CONCLUSIONS: Two novel annotated mitogenome haplotypes for C. sonorensis and C. biguttatus using High-Throughput Sequencing are presented. Current results are useful as the baseline for mitogenome reconstruction of the remaining Culicoides species from single specimens to HTS and genome annotation. Mapping to a species-specific reference mitogenome generated better results for Culicoides mitochondrial genome reconstruction than de novo assembly, while de novo assembly resulted better in the absence of a closely related reference mitogenome. These results have direct implications for molecular-based identification of these vectors of human and zoonotic diseases, setting the basis for using the whole mitochondrial genome as a marker in Culicoides identification.


Assuntos
Ceratopogonidae , Genoma Mitocondrial , Animais , Benchmarking , Bovinos , Ceratopogonidae/genética , Genes Mitocondriais , Genoma Mitocondrial/genética , Humanos , Insetos Vetores/genética
15.
Acta Trop ; 232: 106491, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35504313

RESUMO

Epidemiological studies of leishmaniasis in areas of great human influence and environmental change serve as important tools for the implementation of effective control plans. Mining is currently a major economic activity in Brazil with the municipality of Pains, in the state of Minas Gerais, being one of the main lime producing municipalities in the country. This study aimed to map areas of potential transmission risks within the municipality of Pains using an epidemiological approach in association with the ecological study of sand flies. Twelve samplings carried out between May 2015 and April 2016 collected a total of 12,728 sandflies, comprising 2,854 females (22.42%) and 9,874 males (77.58%), of 20 species belonging to ten genera. The most abundant species was Lutzomyia longipalpis (80%). Leishmania DNA was detected in seven pools of female sand flies with an infection rate of 0.37%. Geoprocessing and the use of maps revealed that vector sand flies are distributed throughout the urban area, as are cases of canine and human leishmaniasis. However, the greatest abundances of sand flies were at sampling points at the border of the urban area. Higher densities of sand flies and the presence of Leishmania DNA may be correlated with extensive degradation by limestone mining. Integrated and multidisciplinary research approaches are necessary to better understand how the impacts of environmental change influence these insect vectors of leishmaniasis.


Assuntos
Leishmaniose , Phlebotomus , Psychodidae , Animais , Brasil/epidemiologia , DNA , Cães , Feminino , Sistemas de Informação Geográfica , Insetos Vetores/genética , Leishmaniose/epidemiologia , Masculino , Minerais , Phlebotomus/genética , Psychodidae/genética
16.
Insect Biochem Mol Biol ; 146: 103797, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640811

RESUMO

The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.


Assuntos
Doença de Chagas , Rhodnius , Animais , Insetos Vetores/genética , Lipocalinas/genética , Filogenia , Rhodnius/química , Rhodnius/genética
17.
Parasit Vectors ; 15(1): 112, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361286

RESUMO

This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.


Assuntos
Culicidae , Moscas Tsé-Tsé , Animais , Animais Geneticamente Modificados , Insetos Vetores/genética , Mosquitos Vetores , Moscas Tsé-Tsé/microbiologia
18.
Parasit Vectors ; 15(1): 69, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236409

RESUMO

BACKGROUND: Proper vector surveillance relies on the ability to identify species of interest accurately and efficiently, though this can be difficult in groups containing cryptic species. Culicoides Latreille is a genus of small biting flies responsible for the transmission of numerous pathogens to a multitude of vertebrates. Regarding pathogen transmission, the C. variipennis species complex is of particular interest in North America. Of the six species within this group, only C. sonorensis Wirth & Jones is a proven vector of bluetongue virus and epizootic hemorrhagic disease virus. Unfortunately, subtle morphological differences, cryptic species, and mitonuclear discordance make species identification in the C. variipennis complex challenging. Recently, single-nucleotide polymorphism (SNP) analysis enabled discrimination between the species of this group; however, this demanding approach is not practical for vector surveillance. METHODS: The aim of the current study was to develop a reliable and affordable way of distinguishing between the species within the C. variipennis complex, especially C. sonorensis. Twenty-five putative microsatellite markers were identified using the C. sonorensis genome and tested for amplification within five species of the C. variipennis complex. Machine learning was then used to determine which markers best explain the genetic differentiation between species. This led to the development of a subset of four and seven markers, which were also tested for species differentiation. RESULTS: A total of 21 microsatellite markers were successfully amplified in the species tested. Clustering analyses of all of these markers recovered the same species-level identification as the previous SNP data. Additionally, the subset of seven markers was equally capable of accurately distinguishing between the members of the C. variipennis complex as the 21 microsatellite markers. Finally, one microsatellite marker (C508) was found to be species-specific, only amplifying in the vector species C. sonorensis among the samples tested. CONCLUSIONS: These microsatellites provide an affordable way to distinguish between the sibling species of the C. variipennis complex and could lead to a better understanding of the species dynamics within this group. Additionally, after further testing, marker C508 may allow for the identification of C. sonorensis with a single-tube assay, potentially providing a powerful new tool for vector surveillance in North America.


Assuntos
Vírus Bluetongue , Ceratopogonidae , Animais , Vírus Bluetongue/genética , Genética Populacional , Insetos Vetores/genética , Repetições de Microssatélites
19.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120121

RESUMO

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/genética , Rhodnius/genética , Adaptação Biológica/genética , Animais , Vetores de Doenças , Ecossistema , Equador/epidemiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Fluxo Gênico , Insetos Vetores/genética , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica , Rhodnius/patogenicidade , Transcriptoma/genética , Trypanosoma cruzi/genética
20.
Mem Inst Oswaldo Cruz ; 116: e210259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35137904

RESUMO

BACKGROUND: Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS: Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES: To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS: We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS: Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.


Assuntos
Doença de Chagas , Heterópteros , Panstrongylus , Triatoma , Animais , Humanos , Insetos Vetores/genética , Panstrongylus/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...